1 The vectors \mathbf{P}, \mathbf{Q} and \mathbf{R} are given by

$$
\mathbf{P}=5 \mathbf{i}+4 \mathbf{j}, \quad \mathbf{Q}=3 \mathbf{i}-5 \mathbf{j}, \quad \mathbf{R}=-8 \mathbf{i}+\mathbf{j} .
$$

(i) Find the vector $\mathbf{P}+\mathbf{Q}+\mathbf{R}$.
(ii) Interpret your answer to part (i) in the cases
(A) \mathbf{P}, \mathbf{Q} and \mathbf{R} represent three forces acting on a particle,
(B) \mathbf{P}, \mathbf{Q} and \mathbf{R} represent three stages of a hiker's walk.

2 The vectors \mathbf{P}, \mathbf{Q} and \mathbf{R} are given by

$$
\mathbf{P}=5 \mathbf{i}+4 \mathbf{j}, \quad \mathbf{Q}=3 \mathbf{i}-5 \mathbf{j}, \quad \mathbf{R}=-8 \mathbf{i}+\mathbf{j} .
$$

(i) Find the vector $\mathbf{P}+\mathbf{Q}+\mathbf{R}$.
(ii) Interpret your answer to part (i) in the cases
(A) \mathbf{P}, \mathbf{Q} and \mathbf{R} represent three forces acting on a particle, [1]
(B) \mathbf{P}, \mathbf{Q} and \mathbf{R} represent three stages of a hiker's walk.

3 In this question the unit vectors \mathbf{i} and \mathbf{j} are pointing east and north respectively.
(i) Calculate the bearing of the vector $-4 \mathbf{i}-6 \mathbf{j}$.

The vector $-4 \mathbf{i}-6 \mathbf{j}+k(3 \mathbf{i}-2 \mathbf{j})$ is in the direction $7 \mathbf{i}-9 \mathbf{j}$.
(ii) Find k.

4 A small box has weight $\mathbf{W} \mathrm{N}$ and is held in equilibrium by two strings with tensions $\mathbf{T}_{1} \mathrm{~N}$ and $\mathbf{T}_{2} \mathrm{~N}$. This situation is shown in Fig. 2 which also shows the standard unit vectors \mathbf{i} and \mathbf{j} that are horizontal and vertically upwards, respectively.

Fig. 2
The tension \mathbf{T}_{1} is $10 \mathbf{i}+24 \mathbf{j}$.
(i) Calculate the magnitude of \mathbf{T}_{1} and the angle between \mathbf{T}_{1} and the vertical.

The magnitude of the weight is $w \mathrm{~N}$.
(ii) Write down the vector \mathbf{W} in terms of w and \mathbf{j}.

The tension \mathbf{T}_{2} is $k \mathbf{i}+10 \mathbf{j}$, where k is a scalar.
(iii) Find the values of k and of w.

5 A particle has a position vector \mathbf{r}, where $\mathbf{r}=4 \mathbf{i}-5 \mathbf{j}$ and \mathbf{i} and \mathbf{j} are unit vectors in the directions east and north respectively.
(i) Sketch \mathbf{r} on a diagram showing \mathbf{i} and \mathbf{j} and the origin O .
(ii) Calculate the magnitude of \mathbf{r} and its direction as a bearing.
(iii) Write down the vector that has the same direction as \mathbf{r} and three times its magnitude.

6 Force \mathbf{F}_{1} is $\binom{6}{13} \mathrm{~N}$ and force \mathbf{F}_{2} is $\binom{3}{5}$, where $\left(\begin{array}{l} \\ 0\end{array}\right)$ and $\binom{0}{1}$ are vectors east and north respectively.
(i) Calculate the magnitude of \mathbf{F}_{1}, correct to three significant figures.
(ii) Calculate the direction of the force $\mathbf{F}_{1}-\mathbf{F}_{2}$ as a bearing.

Force \mathbf{F}_{2} is the resultant of all the forces acting on an object of mass 5 kg .
(iii) Calculate the acceleration of the object and the change in its velocity after 10 seconds.

